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The Large Eddy Simulation {LES) approach simulates a turbulent flow by solving the large scales of
motion while modeling the small scales {subgrid), typically with an eddy viscosity closure. This paper
presents a Modellers perspective of what are the 2 most important elements of the LES model, (1) making
the L.ES Reynolds number iz gs large, and (2) preventing non-physical phenomena.

1 INTRODUCTION

Reynolds Averaging (RA) and Large Eddy Simula-
tion {LES) are two common methods of simulating
turbulent fow. The RA approach is to derive equa-
tions from the Navier Stakes equations, whose so-
lution is the ensernble average of the turbulent flow
being modeled. The derived equations contain terms
that involve afl scales of turbulent motion. To close
this system of equations these terms must be mod-
eled, either with eddy viscosity models or Reynolds
Stress transport eguations. The LES approach is to
explicitly solve all the large scales of turbulent mo-
tion and model only the smali scales (subgrid). Tur-
bulent motion which is not resolved by the grid, con-
stitules the subgrid.

The first LES model was developed by (Deardorff,
1970) which was a 3 dimensional simuiation of a tur-
bulent channel flow. It contained 6720 nodes and
used the Smagorinsky model {Smagorinsky et al.,
1965) for the subgrid paramaterisation. Recent ad-
vancements of the LES technigue include the use
of more complex subgrid paramaterisations (Lesleur
and Metais, 1996) {Germano et al., 1991), and the
use of more nodes {300 thousand node simulations
are NOw common).

1n nature. turbulence occurs when the Reynolds
number (B,) is large. R, is the ratio of inertial force
to diffusion force. In natural flow, the only source
of diffusion is molecular viscosity (), which re-
sutts from molecular interactions in the fiuid. Large
eddy simulations contain additional sources of dif-
fusion, numerical diffusion (v ) and turbulent diffu-
sion (7). The LES methodology requires the large
scales of turbulent flow to be resolved explicitly,
which necessitates the simulated flow to be turbu-
lent. A LES Reynolds number is defined Hyps =
sl 10 determine if the simulated flow is tur-
bulent. Consistent with natural flows, if Rpgs is in
the turbulent regime, the flow is turbulent,

Numerical diffusion results when the continuous
Navier Stokes eguations are discritised into a finite
set of discrete equations. Numerical diffusion is
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large when upwind schemes are used for the discreti-
sation of the advection ierrn, and small when central
schemes are used.

Turbulent diffusion results from the use of eddy
viscosity models to paramaterise the subgrid. Eddy
viscosity models are based on the Boussinesq as-
sumption, which in the L.ES context, implies; the
effect of the subgrid on the large scales, is qualita-
tively the same as molecular viscosity. The magni-
tude of the turbulent diffusion depends on the sub-
grid model, but is generally a function of the re-
golved flow field and the grid size.

Diffusion is a smoothing operator, which reduces
gradients and amplitudes. It's presence in the LES
equations encourages solutions which are smoother,
and thus easier to represent with a finite number of
discrete equations. Conversely, LES models with
small diffusion will be difficult to represent with a
finite set of discrete equations, and their solutions
are susceptible to errors, which can manifest as non-
physical phenemena.

If Ry ps is large, turbulent solutions to the LES
equations will exist. To initiate these solutions the
infiow boundary conditions must be correctly speci-
fed. Two common methods are (1) use of periodic
boundary conditions {Yang and Ferziger, 1993), (2)
use resulis of a previous simulation. Periodic bound-
ary conditions are popular because of their simplic-
ity, but for many flow situations they may not be
valid. For these situations method (2) may be nec-
essary.

2 GOVERNING EQUATIONS

Flow is governed by the instantaneous momentum
and continuity equations, The flux form of these
equations in tensor notation, assuming summation
over repeated indices, are {-(2}.
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u; 1s the velocity tensor, ¢ time, v kinematic
molecular viscosity, p density, p pressure, §; mo-
menium sink or source.

3 FILTERING

Prior to converting the continuous governing equa-
tion Into discrete form they are filtered (3) with a
tow pass filter g, to isolate the subgrid effects.

ﬁ:/(g*u)dv (3)

The filtered Navier Stokes equations become (4)-
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The &%—(ﬂ"ﬁj -~ Wiy} term contains subgrid ef-
fects which need to be modeled,

4 MODEL

4,1 [Drscretisation

The Navier Stokes equations written in conservation
form, for a generic variable ¢ are,

f?f-i-’(?-fz.‘j;
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The flux £ is composed of advective f* = ug and
diffusive ¢ = —I'y V¢ components. Integrating
over a finite volume, and applying the divergence
theorem to the flux term, (6) becomes (7).
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Jer fus Fry Foy fi, fo are the (advection-diffusion)
fluxes in directions east, west north, south, top and
bottom respectively. The time-dependent term, ad-
vection flux, diffusion flux and source term are each
discritised separately.

4.1.1 Advection

The advection term is discritised with three schemes,
1st order upwind, 4th order central, and 5th order
upwind. Consider the discretisation of flux Fe.

1st order upwind.

_j i
8 {¢i+1,j

4th order central.
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5th order upwind.
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4.1.2 Diffusion

The diffusive flux is approximated by a 2nd order
central scheme.

i _ o ADi1 — ¢) 2
i1 = Vg P + O{Ax)

(12}

4.1.3 Time Dependent Term

Integration of (6) is performed fully implicitly in
time.
2nd order accurate involving 3 time levels.

The time-dependent terms discretisation is
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4,14 Pressure Term

The pressure gradients are approximated by central
difference (2nd order accurate in space).

< dp ) _ Dig1,jk = Pijk
Jr; r1/200k Ax

4.2 Subgrid Model

The diffusive effect of the unresolved subgrid {(tur-
bulent diffusion) is assumed constant and set a value
of 0.004. This differs with most subgrid models,
which produce turbulent diffusions that are transient,
spatiaily variant and a function of grid size (eg.
Smagorinsky eddy viscosity closure (16)).
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—S-ij is the resolved strain In the fluid, C,
Smagorinsky constant and [ is representative of the
grid size.

4.3 FEguation Coupling

The continuity and momentum equations are cou-
pled by projecting the velocity field produced by
the mormentum equations (¢*) into divergence free
space (1) {ie. enforce continuity}(Patankar, 1980).

4.4 Solver

Solving the implicit set of discritised eguations is
performed by 2 solvers, the Thomas Algorithm line
solver and Additive Corrective Multigrid.

4.4.1 Line Solver

The implicit set of equations for each node, can be
written in tridiagonal form (18).

adl g ju T OOl b ey sk = di
(18}

Assemnbling ail equations ror nodes of line ¢ =
1...n produces a tridiagonal matrix (19},
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Tridiagonal matrices are solved by the Thomas
algorithm. The 4 steps to cvainate nodal values
¢o - . . n, are shown in (20) to (24).

h=2 a=

0 0 (20)

for i=1 .7l C:ﬂ = 'g——:ij-*—
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d"- _ dz - aidg_l
' bi - aicg_l (22}
Pn = dy, (23)

for i=mn—1...0 ¢ =d —diic
(24)

Accurate solutions from the Thomas Algorithm
require the tridiagonal mairix to be well conditioned
{25).

[5:] > lasf + |eil (25)

4.4.2 Additive Corrective Multigrid

The Additive Corrective Multigrid (ACM) (Hutchin-
son and Raithby, 1986), involves decomposing the
fine grid (684 x 32 x 32) into 3 coarse grids (32 x
16 x 16}, {16 x 8 x 8) and (8 x 4 x 4). The ACM
equations are derived from the coefficients of the fine
grid equations. The coarse grid equations are solved
by Thomas algorithm, and the fine grid solution is
then corrected.

4.5 Boundary Conditions
4.5.3 Lower and Upper boundary

Dirichlet no-slip boundary conditions are applied at
the lower boundary (v = v = w = ). Neumann
and Dirichlet boundary conditions are applied at the
upper boundary (2—3 =% =0= v).

4.5.2 Streamline and Cross-stream boundary

Periodic boundary conditions are applied in the
stream-line and cross-stream directions (¢g =
¢, and dpe1 = ¢1). This results in a matrix
which contains coefficients in the upper right and
lower left, and are solved in accordance with (Strik-
werda, 1990}
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4.6 Solution Procedure

The coupled momentum and continuity equations
are scived by the SIMPLE method (Patankar, 1980},

5 TEST CASE

The Large Eddy Simulation model described in Sec-
tion 4 is applied to solve the flow at a 20% porous
windbreak (see Figure 3). The domain size is
72 x 16 x 16m°, and is discritised on a staggered
64 x 32 x 32 uniformly spaced structured grid. The
porous windbreak extends across the entire width of
the domain and is 4m (B nodes) high, and is mod-
eled with a linear momentum sink in the streamline
momentum equation.

Sy = pd(r)ikiuju (26)
f §(z)dr = 1 @27
k=280 28)

Flow is maintained by the application of a con-
stant pressure gradient in the x direction.

_PL-5
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(29)

6 RESULTS

6.1 Advection Scheme

To model a turbulent flow with LES, the B pg of the
simulation must be large (in the turbulent regime).
This requires the molecular diffusion, numerical dif-
fusion, and turbulent diffusion to be small. Molec-
ular diffusion is always small. Turbulent diffusion
can be made smali by using less diffusive models or
reducing grid size. The magnitude of the numerical
diffusion is dependent on the scheme used to discri-
tised the advection term.

The 4th order central scheme has negligible nu-
merical diffusion and as a consequence Rppg is
targe and a turbulent flow was produced. Unfortu-
nately, the central scheme is prone to produce non-
physical oscillations, which occurred in front of the
windbreak, as illustrated in Figure 4. 1t is pertinent
to mention that the presence of oscillations or other
non-physical characteristics are difficult to observe
in turbulent flow simulations. The oscillations only
became evident when an ensemble average of the
flow was made.

Central Advection

}/ Upwingd Advection
2

Figure 1: Advection Domains

The oscillations are confined to regions of large
gradients, particularly when the flow is decelerating.
To prevent oscillations, 1st order and 3¢h order up-
wind advection schemes were tried. The 1s¢ order
upwind schemes successfully prevents oscillations,
but proved too numerically diffusive, Ry g was in
the laminar regime, and a turbulent fow could not
be achieved. The 5ih order upwind scheme was not
able to prevent the development of osciliations,

To prevent the oscillations, while maintaining a
1 gg inthe turbulent regime, the computational do-
main was decomposed into 2 regions (see Figure 1),
with a 1st order upwind scheme used in the vicin-
ity of the windbreak and a central scheme used else-
where. This is numerically the same as modeling the
windbreak with a momentum sink and a momentum
diffuser (30}

(i 20

S = pd(z)k|u|u +
an

0z

vy = numerical diffusion produced by upwind scheme
(31)

This approach was successfui in preventing the
oscillations, while the large Ry gg outside the wind-
break region permitted the development of wrbu-
lence.

An indication of the effect of diffusion on a tur-
bulent flow ficld can be assessed from Figure 5. The
streamwise velocity variance o2 {turbulence inten-
sity} is expected to be large near the top of the wind-
break, however it is very smal} in this region. Obvi-
ously the turbulent intensity is dissipated by the large
numerical diffusion in the windbreak region.

6.2 Boundary Conditions

The most convenient inflow boundary conditions for
LES are periodic. However, if the flow is not peri-
odic, the domain must be chosen sufficiently long to
negate the influence of obstacies in the flow.
MNumerical results (Wang and Tackle, 1993) and
experimental data (Wilson, 1983), suggests fow past
a windbreak fully recovers 18 windbreak heights (h)
downstream {rom the break. Streamlines of the sim-
ulated flow is Hllustrated in Figure 6. The streamlines

18¢

(30)
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Figure 2: Total Dissipation

are horizontal at the inflow, they are disrupted by the
break, separation. re-attachment and circulation oc-
curs before the streamlines re-establishes horizontal
trajectories. Similar information can be deseminated
from Figure 8. They support (Wang and Tackle,
1993) and (Wilson, 1985) contention that flow re-
covers within 18R,

Figure 5 iflustrates the variance of streamwise ve~
locity, which clearly indicates that the effect of the
windbreak is propagated downstream further than
185, This suggests that an analysis of the persistence
of both the mean and higher moments may be neces-
sary before the domain sizes of a periodic boundary
is chosen.

6.3 Generating Turbulence and
determing if it is
Statistically Steady

A 20% porous windbreak sufficiently disrupted the
flow field to allow the initially laminar flow to be-
come turhulent. Mo additional terbulence generation
mechanisms were necessary, such as peturbing the
flow field with random fluctuations.

An indication of the time of mrbulent transition

and the esiablishment of statistically steady turbu-
lence can be ascertained from a time series plot of
the dissipation function (32). This is a component
of the energy equation for flow, and it measures the
amount of cnergy an elemental volume dissipates to
VISCOUS Stresses.
Figure 2 is a plot of the dissipaticn function, inte-
grated over all control volumes of the domain, for
each time step. The total dissipation increases as the
flow becomes turbulent, before reaching a peak, and
then becoming level, Tt has been determined that the
tevel section of the curve corresponds to a statisti-
cally steady turbulent flow.

Ydomain is 18k long
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7 Windbreak,

Figure 3: Windbreak

Figure 4: non-Physical Oscillations

¢ = 20(5455:) (32)
¢ is the dissipation function and » the total viscos-
ity (numerical4+molecular+tarbulent).

6.4 BSolver

Two solvers were (ried, the Thomas Algorithm
line solver and the Additive Corrective multigrid.
The line solver converged the momentum equations
rapidly, but the pressure correction eguation con-
verged very stowly. The multigrid solver did not af-
fect the rate of convergence of the momentum equa-
tions, but the convergence rate of the pressure cor-
rection equation was increased by a factorof 10 ona
64 »x 32 x 32 grid.

T voevesy
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Figure 5: o2



Figure 6: Average Stream Lines

Figure 7: Instantanecus {7 velocity

CONCLUSIONS

. Rppg must be large (in the turbulent regime)
for LES to simulate turbulent flow. This ne-
cessitates the use of non-diffusive advection
schemes to minimize numerical diffusion, and
fine grids, so the diffusion produced by the sub-
grid mode] is small.

. In regions of large gradients, grid refinement
or diffusive advection schemes must be used to
prevent oscillations, or other non physical ef-
fects.

. A 20% porous windbreak sufficiently perturbed
the Aow to generate turbulence.

. The amount of energy in the LES flow dissi-
pated fo shear, indicates the time of furbulent
transition and when statistically steady turbu-
lence is achieved.

. Line solvers are adequate for the momentum
equations. The convergence rate of the pressure
correction equation is accelerated by a factor of
10 if Additive Corrective Multigrid is used, for
a6d x 32 x 32 grid..

Figure &: Average Streamline Velocity
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